Properties of Exponents

$a^{0}=1$ (0^{0} is undefined)	Any number or variable (except zero) raised to the zero power equals 1 . $7^{0}=1 \quad y^{0}=1 \quad(-5)^{0}=1 \quad-2(x-3)^{0}=-2$
$a^{1}=a$	Any number or variable raised to the $1^{\text {st }}$ power equals itself $7^{1}=7 \quad y^{1}=y \quad(-5)^{1}=-5 \quad-2(x-3)^{1}=-2(x-3)$
$a^{m} a^{n}=a^{(m+n)}$	To MULTIPLY the SAME base, keep the base and ADD the exponents $\begin{gathered} x^{2} x^{5}=(x \cdot x)(x \cdot x \cdot x \cdot x \cdot x)=x^{2+5}=x^{7} \\ 4^{3} \cdot 4^{5}=(4 \cdot 4 \cdot 4)(4 \cdot 4 \cdot 4 \cdot 4 \cdot 4)=4^{3+5}=4^{8} \\ (x+6)^{4}(x+6)^{11}=(x+6)^{4+11}=(x+6)^{15} \end{gathered}$
$\left(a^{m}\right)^{n}=a^{(m n)}$	To Raise a POWER to a POWER, keep the base and MULTIPLY the exponents $\begin{gathered} \left(x^{2}\right)^{5}=(x \cdot x)(x \cdot x)(x \cdot x)(x \cdot x)(x \cdot x)=x^{2 \cdot 5}=x^{10} \\ \left(3^{4}\right)^{2}=\left(3=3^{2 \cdot 4}=3^{8}\right. \\ \left((x+6)^{4}\right)^{11}=(x+6)^{4 \cdot 11}=(x+6)^{44} \end{gathered}$
$\frac{a^{m}}{a^{n}}=a^{(m-n)}$	To DIVIDE the SAME base, keep the base and SUBTRACT the exponents $\begin{gathered} \frac{x^{5}}{x^{2}}=x^{5-2}=x^{3} \quad \text { OR } \quad \frac{x^{5}}{x^{2}}=\frac{x \cdot x \cdot x \cdot x \cdot x}{x \cdot x}=\frac{x \cdot x \cdot x}{1}=x^{3} \\ \frac{5^{3}}{5^{6}}=5^{3-6}=5^{-3}=\frac{1}{5^{3}}=\frac{1}{125} \quad \text { OR } \quad \frac{5^{3}}{5^{6}}=\frac{5 \cdot 5 \cdot 5}{5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5}=\frac{1}{5 \cdot 5 \cdot 5}=\frac{1}{125} \end{gathered}$
$a^{-m}=\frac{1}{a^{m}}$	A NEGATIVE exponent moves the number or variable that it touches across the fraction bar and makes the exponent positive. $3^{-2}=\frac{3^{-2}}{1}=\frac{1}{3^{2}}=\frac{1}{9} \quad \frac{4^{-3} x^{7}}{n^{6} x^{-2}}=\frac{x^{7} x^{2}}{4^{3} n^{6}}=\frac{x^{(7+2)}}{4^{3} n^{6}}=\frac{x^{9}}{64 n^{6}}$
$(a b)^{n}=a^{n} b^{n}$	An exponent outside of a term is applied to every factor in that term $\left(5 x y^{3}\right)^{2}=5^{2} x^{2} y^{3 \cdot 2}=25 x^{2} y^{6}$ This does NOT apply if you are adding or subtracting inside the parenthesis Watch out!!!! $(x+5)^{3} \neq x^{3}+5^{3}$!!!!! (They are NOT equal) $(x+5)^{3}=(x+5)(x+5)(x+5)=x^{3}+15 x^{2}+75 x+125$
$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$	An exponent outside of a fraction is applied to both the numerator and denominator of the fraction (both top and bottom) $\left(\frac{9}{k}\right)^{2}=\frac{9^{2}}{k^{2}}=\frac{81}{k^{2}}$
$a^{\frac{n}{m}}=\sqrt[m]{a^{n}}$	The denominator of the rational exponent becomes the index of a radical. $27^{\frac{2}{3}}=(\sqrt[3]{27})^{2}=3^{2}=9$

