Curl of a Vector

Consider a vector \mathbf{A} (we use boldface to denote a vector) with rectangular coordinates $\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}$, and A_{z}. We can write \mathbf{A} as follows:

$$
A=A_{x} \mathbf{i}+A_{y} j+A_{z} \mathbf{k}
$$

where \mathbf{i} is a unit vector in the x direction, \mathbf{j} is a unit vector in the y direction, and \mathbf{k} is a unit vector in the z direction.

Using $\nabla=\mathbf{i} \partial / \partial \mathrm{x}+\mathbf{j} \partial / \partial \mathrm{y}+\mathbf{k} \partial / \partial \mathrm{z}$, we define the curl of \mathbf{A}, written $\nabla \mathbf{x} \mathbf{A}$ ("del cross A") or $\operatorname{curl} \mathbf{A}$, as follows:

$$
\begin{equation*}
\nabla \mathbf{x A}=\left(\partial \mathrm{A}_{\mathrm{z}} / \partial \mathrm{y}-\partial \mathrm{A}_{\mathrm{y}} / \partial \mathrm{z}\right) \mathbf{i}-\left(\partial \mathrm{A}_{\mathrm{z}} / \partial \mathrm{x}-\partial \mathrm{A}_{\mathrm{x}} / \partial \mathrm{z}\right) \mathrm{j}+\left(\partial \mathrm{A}_{\mathrm{y}} / \partial \mathrm{x}-\partial \mathrm{A}_{\mathrm{x}} / \partial \mathrm{y}\right) \mathbf{k} \tag{1}
\end{equation*}
$$

(For a quick review of partial derivatives, see http://www.math.wisc.edu/~CONRAD/s08/partials.pdf)
This is an ugly formula, so it is often written as a determinant:

$$
\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
A_{x} & A_{y} & A_{z}
\end{array}\right|
$$

(For a quick review of how to calculate determinants, see http://www.ucl.ac.uk/mathematics/geomath/level2/mat/mat121.html)

Notice that the curl is a vector. (It can be thought of as a cross product between the del operator - the ∇ - and the vector \mathbf{A}, but understanding that point is not essential to success here.)

The following websites may also be helpful:
http://www.tech.plym.ac.uk/maths/resources/pdflatex/div_curl.pdf http://hyperphysics.phy-astr.gsu.edu/hbase/vvec.html

Simple EXAMPLE:

Suppose $\mathbf{A}=3 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k}$. This is a nice, simple, constant vector. Since all the components are constants, all the partial derivatives of the components are zero.

$$
\nabla \mathbf{x A}=0
$$

More Complicated EXAMPLE:

Suppose $\mathbf{A}=3 x^{2} \mathbf{i}+5 x y z \mathbf{j}$. Calculate curl \mathbf{A}.
Before we start the formula, notice that in this example, $\mathrm{A}_{\mathrm{z}}=0$, so several of the terms drop out.

$$
\begin{aligned}
\operatorname{curl} \mathrm{A}= & \left(\partial \mathrm{A}_{\mathrm{z}} / \partial \mathrm{y}-\partial \mathrm{A}_{\mathrm{y}} / \partial \mathrm{z}\right) \mathrm{i}-\left(\partial \mathrm{A}_{z} / \partial \mathrm{x}-\partial \mathrm{A}_{\mathrm{x}} / \partial \mathrm{z}\right) \mathrm{j}+\left(\partial \mathrm{A}_{\mathrm{y}} / \partial \mathrm{x}-\partial \mathrm{A}_{\mathrm{x}} / \partial \mathrm{y}\right) \mathbf{k} \\
& =(\partial / \partial \mathrm{y}(0)-\partial / \partial \mathrm{z}(5 \mathrm{xyz})) \mathrm{i}-\left(\partial / \partial \mathrm{x}(0)-\partial / \partial \mathrm{z}\left(3 \mathrm{x}^{2}\right)\right) \mathbf{j}+\left(\partial / \partial \mathrm{x}(5 \mathrm{xyz})-\partial / \partial \mathrm{y}\left(3 \mathrm{x}^{2}\right)\right) \mathbf{k} \\
& =-5 \mathrm{xy} \mathrm{i}+5 \mathrm{yz} \mathbf{k}
\end{aligned}
$$

If you want to know the value of the curl at any point (x, y, z), you just substitute the values of x, y , and z into the curl formula.

To find the curl of the function above at the point $x=4, y=6, z=9$, substitute those values into the curl formula for that function:

$$
\operatorname{curl} \mathbf{A}=\nabla \times \mathrm{A}=-5 x y \mathrm{i}+5 y z \mathrm{k}=-5(4)(6) \mathrm{i}+5(6)(9) \mathbf{k}=-120 i+270 k
$$

Interpretation

The curl represents how much a vector field "swirls" around a point, and indicates the direction of the "swirl."

For a nice concise discussion of the physical interpretation of curl, see http://keep2.sjfc.edu/faculty/kgreen/vector/block2/del_op/node9.html or http://betterexplained.com/articles/vector-calculus-understanding-circulation-and-curl/.

Also see http://mathinsight.org/curl_idea for an interactive visual.

