Curvature and Acceleration in 3 Dimensions (Calc 3)

\[\mathbf{r}(t) = <x(t), y(t), z(t)>, \quad \mathbf{r}'(t) = \mathbf{v}(t) = <x'(t), y'(t), z'(t)>, \quad \mathbf{v}(t) = |\mathbf{v}(t)|, \]
\[\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t) \]

1. **Arc Length** \(s \):
 \[s(t) = \int_a^b \sqrt{(x'(u))^2 + (y'(u))^2 + (z'(u))^2} \, du = \int_a^b |\mathbf{r}'(u)| \, du \]
 a. From \(t = a \) to \(t = b \):
 \[s = \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} \, dt = \int_a^b \mathbf{v}(t) \, dt \]
 c. So \(\frac{ds}{dt} = |\mathbf{r}'(t)| = \mathbf{v}(t) \)

2. **Unit Tangent Vector** \(\mathbf{T} \):
 \[\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \]

3. **Curvature** \(\kappa \):
 a. \[\kappa = \frac{\left| \frac{dT}{ds} \right|}{\left| \mathbf{r}'(t) \right|} = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r'}(t)|^3} \]
 b. For a function \(y = f(x) \):
 \[\kappa = \frac{|f''(x)|}{\left[1 + (f'(x))^2\right]^{3/2}} \]

4. **Principal Unit Normal Vector** \(\mathbf{N} \):
 \[\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} \]
 a. \(\mathbf{N} \) is perpendicular to the unit tangent vector \(\mathbf{T} \) and points in the direction in which the curve is bending.
 b. Using acceleration:
 \[\mathbf{N} = \frac{\mathbf{a} - a_s \mathbf{T}}{a_n} \]

5. **Binormal Vector**: \(\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t) \)

6. **Normal and Osculating Planes**:
 a. The **normal plane** is the plane that contains \(\mathbf{N} \) and \(\mathbf{B} \).
 b. The **osculating plane** contains \(\mathbf{T} \) and \(\mathbf{N} \).
 c. The circle in the osculating plane that most approximates the curve at the point \(\mathbf{C} \) (same curvature and tangent and its center lies along \(\mathbf{N} \)) is called the **osculating circle**. Its radius \(\rho \) is called the **radius of curvature** and is \(\rho = \frac{1}{\kappa} \), the reciprocal of the curvature of the curve at point \(\mathbf{C} \).
Curvature and Acceleration in 3 Dimensions (Calc 3)

7. Acceleration: \(a = \frac{dv}{dt} T + \kappa v^2 N = a_T T + a_N N \)

a. Tangential Component of Acceleration:
\[
 a_T = \frac{dv}{dt} = \frac{\mathbf{v} \cdot \mathbf{a}}{v} = \frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|}
\]

b. Normal Component of Acceleration:
\[
 a_N = \kappa v^2 = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}
\]