Divergence of a Vector

Consider a vector \mathbf{A} (we use boldface to denote a vector) with rectangular coordinates A_{x}, A_{y}, and $\mathrm{A}_{\text {z }}$. We can write \mathbf{A} as follows:

$$
\mathbf{A}=\mathrm{A}_{\mathrm{x}} \mathbf{i}+\mathrm{A}_{y} \mathbf{j}+\mathrm{A}_{z} \mathbf{k}
$$

where \mathbf{i} is a unit vector in the x direction, \mathbf{j} is a unit vector in the y direction, and \mathbf{k} is a unit vector in the z direction.

Using $\nabla=\mathbf{i} \partial / \partial \mathbf{x}+\mathbf{j} \partial / \partial \mathbf{y}+\mathbf{k} \partial / \partial \mathrm{z}$, we define the divergence of \mathbf{A}, written $\nabla \cdot \mathbf{A}$ ("del dot \mathbf{A} ") or $\operatorname{div} \mathbf{A}$, as follows:

$$
\begin{equation*}
\nabla \cdot \mathrm{A}=\partial \mathrm{A}_{\mathrm{x}} / \partial \mathrm{x}+\partial \mathrm{A}_{\mathrm{y}} / \partial \mathrm{y}+\partial \mathrm{A}_{\mathrm{z}} / \partial \mathrm{z} \tag{1}
\end{equation*}
$$

(For a quick review of partial derivatives, see http://www.math.wisc.edu/~CONRAD/s08/partials.pdf)

Notice that the divergence is a scalar. It is the sum of one or more scalars. (It can be thought of as a dot product between the del operator - the ∇ - and the vector \mathbf{A}, but understanding that point is not essential to success here.)

The following websites may also be helpful:
http://www.tech.plym.ac.uk/maths/resources/pdflatex/div_curl.pdf
http://hyperphysics.phy-astr.gsu.edu/hbase/vvec.html

EXAMPLE:

Suppose $\mathbf{A}=3 \mathrm{x}^{2} \mathbf{i}+5 \mathrm{y} \mathbf{j}$. Compute div \mathbf{A}.

STEP 1: Compute the necessary partial derivatives

$$
\partial \mathrm{A}_{\mathrm{x}} / \partial \mathrm{x}=6 \mathrm{x} \quad \partial \mathrm{~A}_{\mathrm{y}} / \partial \mathrm{y}=5 \quad \partial \mathrm{~A}_{z} / \partial \mathrm{z}=0
$$

STEP 2: Use equation (1) to compute the divergence

$$
\begin{equation*}
\operatorname{Div} \mathbf{A}=\nabla \cdot \mathrm{A}=\partial \mathrm{A}_{\mathrm{x}} / \partial \mathrm{x}+\partial \mathrm{A}_{\mathrm{y}} / \partial \mathrm{y}+\partial \mathrm{A}_{\mathrm{z}} / \partial \mathrm{z}=6 \mathrm{x}+5 \tag{2}
\end{equation*}
$$

Further EXAMPLE:

If you want to know the value of the divergence at any point (x, y, z), you just substitute the values of x, y, and z into the divergence formula.

Find the divergence of the function (2) above at the point $x=2, y=3$.

$$
\operatorname{Div} A=6 x+5=(6)(2)+5=17
$$

Interpretation

The divergence of a vector field at any point represents how much the field spreads out. For a nice visual, see http://keep2.sjfc.edu/faculty/kgreen/vector/block2/del_op/node5.html.

