Divergence of a Vector

Consider a vector **A** (we use **boldface** to denote a vector) with rectangular coordinates A_x , A_y , and A_z . We can write **A** as follows:

$$\mathbf{A} = \mathbf{A}_{\mathbf{x}}\mathbf{i} + \mathbf{A}_{\mathbf{y}}\mathbf{j} + \mathbf{A}_{\mathbf{z}}\mathbf{k}$$

where \mathbf{i} is a unit vector in the x direction, \mathbf{j} is a unit vector in the y direction, and \mathbf{k} is a unit vector in the z direction.

Using $\nabla = \mathbf{i} \partial/\partial \mathbf{x} + \mathbf{j} \partial/\partial \mathbf{y} + \mathbf{k} \partial/\partial \mathbf{z}$, we define the divergence of **A**, written $\nabla \cdot \mathbf{A}$ ("del dot **A**") or div **A**, as follows:

$$\nabla \bullet \mathbf{A} = \partial A_x / \partial x + \partial A_y / \partial y + \partial A_z / \partial z \tag{1}$$

(For a quick review of partial derivatives, see <u>http://www.math.wisc.edu/~CONRAD/s08/partials.pdf</u>)

Notice that the divergence is a *scalar*. It is the sum of one or more scalars. (It can be thought of as a dot product between the del operator – the ∇ – and the vector **A**, but understanding that point is not essential to success here.)

The following websites may also be helpful:

http://www.tech.plym.ac.uk/maths/resources/pdflatex/div_curl.pdf http://hyperphysics.phy-astr.gsu.edu/hbase/vvec.html

EXAMPLE:

Suppose $\mathbf{A} = 3x^2 \mathbf{i} + 5y \mathbf{j}$. Compute div \mathbf{A} .

STEP 1: Compute the necessary partial derivatives

$$\partial A_x / \partial x = 6x$$
 $\partial A_y / \partial y = 5$ $\partial A_z / \partial z = 0$

STEP 2: Use equation (1) to compute the divergence

Div
$$\mathbf{A} = \nabla \cdot \mathbf{A} = \partial A_x / \partial x + \partial A_y / \partial y + \partial A_z / \partial z = 6x + 5$$
 (2)

Further **EXAMPLE:**

If you want to know the value of the divergence at any point (x, y, z), you just substitute the values of x, y, and z into the divergence formula.

Find the divergence of the function (2) above at the point x = 2, y = 3.

Div $\mathbf{A} = 6x + 5 = (6)(2) + 5 = 17$

Interpretation

The divergence of a vector field at any point represents how much the field spreads out. For a nice visual, see <u>http://keep2.sjfc.edu/faculty/kgreen/vector/block2/del_op/node5.html</u>.