Solving Log (or Natural Log) Equations

You can have a maximum of one $\log (\ln)$ on each side of the equal sign. (i.e., You can have zero $\log ($ or $\ln)$ or one $\log ($ or $\ln)$ on each side but not more.)

Case I: If there is $\log ($ or $\ln)$ on only one side of the equal sign

1) Change to exponential form
2) Solve for x

$$
\log _{7} x=2 \Rightarrow x=7^{2} \Rightarrow x=49
$$

Case II: If there is a \log (or \ln) on both sides of the equal sign

1) You must combine the \log (or \ln) into a single \log (or \ln) so that you only have one $\log ($ or $\ln)$ on each side of the equal sign
2) Drop both \log (or \ln).....it will appear as if the \log (or \ln) cancels out
3) Solve for x

$$
\begin{array}{ll}
\ln 3+\ln (2 x+1)=\ln 15 & \\
\ln [3(2 x+1)]=\ln 15 & \text { Step } 1 \\
3(2 x+1)=15 & \text { Step } 2 \\
6 x+3=15 & \\
6 x=12 & \\
x=2 &
\end{array}
$$

Note: You must check answers in \log (or \ln) problems to make sure the answer lies within the domain. The check is not shown here.

Solving Problems When the Variable is in the Exponent

You $\log ($ or \ln) both sides of an equation if and only if the variable is in the exponent (unless the equation can be factored).

1) If the variable is in the exponent, take the $\log ($ or $\ln)$ both sides of the equation
2) "Pop" the exponent down in front of the \log (or \ln)
3) Solve for $x \quad$ (remember that $\ln e=1$)

$$
\begin{array}{ll}
e^{3 x}=4 & \\
\ln e^{3 x}=\ln 4 & \text { Step 1 } \\
3 x \ln e=\ln 4 & \text { Step 2 } \\
3 x(1)=\ln 4 & \\
3 x=\ln 4 & \\
x=\frac{\ln 4}{3} &
\end{array}
$$

Note: If the equation can be factored, first factor the equation. Then use the method above.

Example:
$e^{2 x}-3 e^{x}+2=0$
$\left(e^{x}-1\right)\left(e^{x}-2\right)=0$
$e^{x}-1=0$ or $e^{x}-2=0$
Now use the method shown to the left to solve each equation to give $x=0$ or $x=\ln 2$.

