FACTORING HINTS

1. Always "take out" greatest common factors. (Remember: There may not always be a GCF)

ex.
$$2x^3 - 8x^2 + 6x$$
$$2x(x^2 - 4x + 3)$$
 - this can be factored again to $2x(x-1)(x-3)$.

- 2. Count the number of terms
- A. **Two terms**: Use formula if possible (think squares or cubes)

Difference of Squares

1)
$$x^2 - y^2 = (x - y)(x + y)$$

ex. $4x^2 - 9 = (2x - 3)(2x + 3)$
 $(2x)^2 - (3)^2$

Sum of Square

2) $x^2 + y^2 = Prime$ ex. $4x^2 + 9$ (Cannot be factored; therefore, it is prime)

Difference of Cubes

3)
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

ex. $8x^3 - 27y^3 = (2x - 3y)(4x^2 + 6xy + 9y^2)$

Sum of Cubes
4)
$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

ex. $64x^3 + 1 = (4x)^3 + 1^3$
 $(4x + 1)(16x^2 - 4x + 1)$

- B. Three terms: You may use one of two different methods: Trial & Error or AC Method.
 - ex. Trial & Error

al & Error
$$2x^3 - 8x^2 + 6x$$

$$2x(x^2 - 4x + 3)$$

$$2x(x)$$

$$2x(x)$$

$$2x(x)$$

$$2x(x - 3)(x - 1)$$
-- step 1 above ("take out" common factors)
-- split up the x^2
-- decide on the signs
-- split up the 3 (the last term) you must check with FOIL

For examples using the AC Method, please refer to our "Factoring Trinomials (AC Method)" handout.

C. Four terms: Grouping

ex.
$$5x^2 + 2x + 10x + 4$$

 $(5x^2 + 2x) + (10x + 4)$ --divide into 2 groups
 $x(5x+2) + 2(5x+2)$ --factor each group separately (the inside of the parenthesis should be the same otherwise that will change the grouping)
 $x(5x+2) + 2(5x+2)$ --factor again
 $(5x+2)(x+2)$ --factor out $(5x+2)$
 $(5x+2)(x+2)$ --check with FOIL

ex.
$$6x^2 + 3x - 8x - 4$$

 $(6x^2 + 3x) - (8x + 4)$ -- a negative in the middle means change the 2^{nd} sign.
 $3x(2x+1) - 4(2x+1)$ -- factor each group separately
 $(2x+1)(3x-4)$ -- factor out the $(2x+1)$

The grouping can be changed and the results will stay the same.

$$6x^2$$
 - $8x + 3x - 4$
 $2x (3x - 4) + 1 (3x - 4)$ --factor each group separately
 $(3x - 4)(2x + 1)$ --factor out the $(2x + 1)$
Check with FOIL