Conic Sections

Parabola

Equation	$(x-h)^2 = 4p(y-k)$	$(y-k)^2 = 4p(x-h)$
Vertex	(h, k)	(h,k)
Focus	(h, p+k)	(p+h,k)
Directrix	y = -p+k	x = -p + h
Focal Diameter	4 <i>p</i>	4 <i>p</i>
If $p \ge 0$	Opens UP	Opens RIGHT
If $p \le 0$	Opens DOWN	Opens LEFT

In the examples below, p = 1 and h and k are both 0. (So the vertex is at the origin.)

Ellipse

Equation	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$
	a > b > 0	a > b > 0
Center	(h,k)	(h, k)
Vertices	$(h \pm a, k)$	$(h, k \pm a)$
$Foci c^2 = a^2 - b^2$	$(h \pm c, k)$	$(h, k \pm c)$
Major Axis	Horizontal, length 2a	Vertical, length 2a
Minor Axis	Vertical, Length 2b	Horizontal, Length 2b
Eccentricity	e = c/a	e = c/a

In the examples below, h = 1 and k = 2, so the center is at (1, 2). Also, a = 3 and b = 2.

Conic Sections

Hyperbola

a		
Equation	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$
	a > 0, b > 0	a > 0, b > 0
Center	(h, k)	(h, k)
Vertices	$(h\pm a,k)$	$(h, k \pm a)$
$Foci c^2 = a^2 + b^2$	$(h \pm c, k)$	$(h, k \pm c)$
Transverse Axis	Horizontal, length 2a	Vertical, length 2a
Minor Axis	Vertical, Length 2b	Horizontal, Length 2b
Asymptotes	$y-k=\pm\frac{b}{a}(x-h)$	$y - k = \pm \frac{a}{b}(x - h)$

In both examples below, h = -4 and k = 2, so the center is at (-4, 2). Also, a = 2 and b = 3.

The hyperbola on the right above is plotted again with the

asymptotes (dashed lines)

$$y-2=\pm\frac{2}{3}(x+4)$$
,

center (-4, 2),

vertices (-4, 0) and (-4, 4), and

foci (-4,
$$2 \pm \sqrt{13}$$
).

