Properties of Logarithms

Exponential FormTransforms in both directionsLogarithmic Form
$$b^y = x$$
 \longleftrightarrow $y = \log_b x$

Rules: x > 0, b > 0, $b \neq 1$

and $\log_b u = \log_b v$ if and only if u = v

	·
$\log_b nk = \log_b n + \log_b k$	Product Rule: The log of the product of two numbers is equal to the sum of the log of each of the numbers.
$\log_b \frac{n}{k} = \log_b n - \log_b k$	Quotient Rule: The log of the quotient of two numbers is equal to the difference between the log of each number.
$\log_b n^k = k \log_b n$	Power Rule: The log of a number that is raised to a power is equal to the exponent times the log of the number.
$\log x = \log_{10} x$	Definition: The word "log" with no base shown is a shorthand way of writing a log with the base of 10. This is called a Common Log.
$ \ln x = \log_e x $	<u>Definition</u> : The symbol "ln" is a shorthand way of writing a log with the base of <i>e</i> . This is called a <u>Natural Log</u> .
$\log_b 1 = 0$	The log of 1 equals zero because if we go back to exponential form, we see that $b^0 = 1$ ($b \neq 0$) (see definition of zero exponent)
$\log_b b = 1$	The log of b to the base b equals 1 because if we go back to exponential form, we see that $b^1 = b$ ($b \neq 0$)
$\log_b b^x = x$	The log of b^x to the base b is equal to just the exponent x because if we go back to exponential form, we see that $b^x = b^x \ (b \neq 0)$
$b^{\log_b x} = x$	A base b raised to the power of a log to that same base is equal to just the argument x because if we go into logarithmic form, we see that $\log_b x = \log_b x$ ($b \neq 0$)
$\log_b x = \frac{\log x}{\log b} = \frac{\ln x}{\ln b}$	Change of Base Theorem: Allows you to find the value of a logarithm with a base other than 10 or e using your calculator (use either of the fractions shown)