Exponential Applications on the TI 84 TVM Solver

Dr. Johnny Duke
Georgia Highlands College

Georgia Perimeter College's Learning and Tutoring Center extends sincere thanks to Dr. Johnny Duke, Georgia Highlands College, for granting us permission to post this document on our website, allowing GPC students to benefit from his time and expertise.
3/6/2014

Introduction to the TVM Solver

- To access the TVM Solver hit APPS
- Choose 1: Finance
- Choose 1:TVM Solver..

Key to the TVM Solver

N : Total number of compounding over the entire time

- This is NOT n in the finite compound interest formula.
- This is nt in the exponent of the finite compound interest formula.
- For instance, if an investment is compounded monthly over 30 years, $\mathrm{N}=360$ (30*12).
- If an investment is compounded quarterly over 20 years, then $\mathrm{N}=80(4 * 20)$.

Key to TVM Solver

I: This the interest rate.

- Unlike substitution in the formulas, where a decimal value for the \% was used, in the TVM solver I is entered in its percent form.
- For instance, if the interest rate is 6%, then in the TVM solver enter 6-not 06 .
- If the interest rate is 8.75%, in the TVM solver enter 8.75.

Key to TVM Solver

PV: Present Value

- This is Principle in the formulas
- So, if Jonna invested $\$ 500$ at 6%, her PV is $\$ 500$.

PMT: Payment

- This would represent a regular payment to be made either on a loan or to be put in an investment.
- So, if Nick opens an account and makes a monthly installment of $\$ 150$, then PMT is $\$ 150$.

Key to TVM Solver

FV: Future Value

- This is the amount of money in the account or the amount remaining on a loan at a specified time.
- Suppose, Roberta invests \$5,000 compounded monthly for 20 years. FV is the amount she will have at the end of the 20 years.
- Or, suppose that Mandy borrowed $\$ 20,000$ for five years. At the end of 5 years, her FV is zero.
- NOTE: Generally, in the TVM solver PV and FV have opposite signs.

Key to TVM Solver

P/Y: Payments per year

- This is the number of payments made per year.
- Generally, set this before the C/Y.
- Generally, P/Y and C/Y will be the same.

C/Y: Compounding periods per year.

- Set this after P/Y.
- If interest is compounded quarterly, $\mathrm{C} / \mathrm{Y}=4$.
- If interest is compounded monthly, $\mathrm{C} / \mathrm{Y}=12$

One-time Investment

Frank invests \$1,200 compounded quarterly at 6.25\%. How much money will be in the account after 10 years?

$$
\begin{aligned}
& \mathrm{N}=40 \quad(4 * 10) \\
& \mathrm{I} \%=6.25 \\
& \mathrm{PV}=1200 \\
& \mathrm{PMT}=0
\end{aligned}
$$

FV This is what we want to find
$\mathrm{P} / \mathrm{Y}=4$
$\mathrm{C} / \mathrm{Y}=4$
Enter all values and arrow back to FV. Hit "Alpha" and "Enter." The FV will appear. It is -2231.09 , which means there is $\$ 2,231.09$ in his account after 10 years.
How much of this was interest? 2231.09-1200.00=1031.09

Now let's turn to annuities

As opposed to a one-time investment like the previous example, an annuity involves regular payments into an investment account.

Example: Julia puts $\$ 150$ per month into a future retirement account.

Inversely, annuities can involve a person taking regular withdrawals from an account.

Example: At 66 Julia takes the money that she has saved and begins to take regular withdrawals of $\$ 1,200.00$ from her account.

Annuity

Marcus puts $\$ 150$ per month in an annuity that pays 5.75% interest compounded monthly. How much money will he have in the account in 30 years?

$$
\mathrm{N}=360
$$

$$
\mathrm{I} \%=5.75
$$

$$
P V=0
$$

$$
\mathrm{PMT}=150
$$

FV This is what we want to find
$\mathrm{P} / \mathrm{Y}=12$
$\mathrm{C} / \mathrm{Y}=12$
Answer: FV is -143669.64 or $\$ 143,669.64$

How much did Marcus put into the account? $150 * 360=54,000$
How much interest did Marcus make? $\quad 143,669.64-54,000=89669.64$

Combo Investment

Kim is 22 years old. She has $\$ 2,000$ that she can put into an investment for retirement. She also wants to put $\$ 250$ per month in to the account until she retires at 66. If the investment pays 7.25% compounded monthly, how much will she have when she retires?

$$
\begin{aligned}
& \mathrm{N}=528 \\
& \mathrm{I} \%=7.25 \\
& \mathrm{PV}=2000 \\
& \mathrm{PMT}=250 \\
& \text { FV This is what we want to find } \\
& \mathrm{P} / \mathrm{Y}=12 \\
& \mathrm{C} / \mathrm{Y}=12
\end{aligned}
$$

Answer: $\$ 1,002,171.89$ She will be a millionaire!

How much of her million dollars is from interest?

Who has the better plan?

Jenny starts saving for retirement when she is 22 years old. She puts aside $\$ 175 /$ month. Her friend Heather decides to wait until she is established financially to save for retirement. She plans to start setting aside $\$ 350 /$ month beginning at age 35 . If both choose investments that pay 7.75% compounded monthly and both retire at 65, who made the better choice?

$$
\begin{array}{lc}
\mathrm{N}=516 & 360 \\
\mathrm{I} /=7.75 & 7.75 \\
\mathrm{PV}=0 & 0 \\
\mathrm{PMT}=175 & 350 \\
\mathrm{FV}=\text { This is what we are to find. } \\
\mathrm{P} / \mathrm{Y}=12 \\
\mathrm{C} / \mathrm{Y}=12 &
\end{array}
$$

Answer: Jenny: $\$ 723,748.50$ Heather: $\$ 495,898.83$

How long will it last?

Manuel just retired. He has \$450,000 in investments that he is combining to buy an annuity, which pays 6.5% interest compounded monthly. He wants his money to last for 20 years. How much money can he withdraw per month to meet his goal?

$$
\begin{aligned}
& \mathrm{N}=240 \quad(12 * 20) \\
& \mathrm{I} \%=6.5 \\
& \mathrm{PV}=450000
\end{aligned}
$$

PMT This what we are to find.

$$
\begin{aligned}
& \mathrm{FV}=0 \\
& \mathrm{P} / \mathrm{Y}=12 \\
& \mathrm{C} / \mathrm{Y}=12
\end{aligned}
$$

Answer: $\$ 3,355.08$ per month for 20 years.

How long will it last?

On second thought, Manuel wants to have \$100,000 left for his heirs. He has $\$ 450,000$ in investments that he is combining to buy an annuity, which pays 6.5% interest compounded monthly. He wants his money to last for 20 years. How much money can he withdraw per month to meet his goal?

$$
\begin{aligned}
& \mathrm{N}=240 \quad(12 * 20) \\
& \mathrm{I} \%=6.5 \\
& \mathrm{PV}=450000 \\
& \mathrm{PMT} \text { This what we are to find. } \\
& \mathrm{FV}=-100000 \quad \text { (Notice the opposite sign of } \mathrm{PV} \text {) } \\
& \mathrm{P} / \mathrm{Y}=12 \\
& \mathrm{C} / \mathrm{Y}=12
\end{aligned}
$$

Answer: $\$ 3,151.17$ per month for 20 years.

Home Buying Terminology

Selling price: The price in the contract to buy the house.

Closing: The meeting at which the buyer, seller, and loan officers legally finalize the sell of the house.

Down payment: The amount of money the buyer must bring to closing to prepay part of the price of the house. This is usually a percentage of the selling price.

Example: A buyer pays $\$ 120,000$ for a house. The down payment is 20% of the purchase price .

$$
.20 \times 120,000=24,000
$$

Home buying terminology

Mortgage: The amount of money that the buyers actually borrow to pay for the house.
Example: The mortgage for a house with purchase price of $\$ 120,000$ and a 20% down payment is $\$ 96,000$.
(Mortgage $=$ Purchase Price - Down payment)

Points: A prepayment on interest due at closing in order to lower the interest rate of the mortgage. Each point is a percentage point of the mortgage (loan amount).

Example: 2 points are paid at closing to lower the interest rate of the mortgage (loan amount) of $\$ 96,000$.
The points will cost $\$ 1,920(.02 * 96000)$.

Mortgage

Mary Beth takes out a \$175,000 mortgage that requires monthly payments. The interest is 4.125 compounded monthly for 15 years. What is her monthly payment?

$$
\begin{aligned}
& \mathrm{N}=180 \quad(12 * 15) \\
& \mathrm{I} \%=4.125 \\
& \mathrm{PV}=-175000 \quad \text { (Notice the negative) }
\end{aligned}
$$

PMT=This what we want to find
$\mathrm{FV}=0$
$\mathrm{P} / \mathrm{Y}=12$
$\mathrm{C} / \mathrm{Y}=12$
Answer: \$1,305.44

How much does the house REALLY cost?

The cost of a house is NOT really the selling price.
Consider all that goes into what you pay for a house.

Total Cost $=$ Down payment + Points + Total Monthly Payments

Example: George buys a house for $\$ 200,000$. The down payment is $20 \%(\mathrm{DP}=.20 * 200,000=40,000)$. He pays 2 points (Points $=.02 * 160,000=3,200)$. Suppose his monthly payments end up being $\$ 763.86$ for 30 years ($\$ 274989.60$).
$\mathrm{TC}=40,000+3,200+274,989.60=\$ 318,189.60$

How much did they really pay?

Joey and Penny are buying a house. The cost of the house is \$150,000 and requires a 20% down payment. They can get a 30 year mortgage for 4.25% interest, or they can get a 15 year mortgage for 4.00% interest. Find the total cost of the house for each plan.
First, remember the mortgage does not include the down payment, but the total cost will. The mortgage is 80% of $\$ 150,000(\$ 120,000)$ Now find the payment under each plan.

$$
\begin{array}{ll}
\mathrm{N}=360 & 180 \\
\mathrm{I} \%=4.25 & 4 \\
\mathrm{PV}=120000 & 120000
\end{array}
$$

PMT $=$ This is what we are finding

$$
\begin{array}{ll}
F V=0 & 0
\end{array}
$$

$$
\mathrm{P} / \mathrm{Y}=12 \quad 12
$$

$$
\mathrm{C} / \mathrm{Y}=12 \quad 12
$$

Answer: $\$ 590.33$ for 30 years or $\$ 887.63$

How much did they really pay?

Joey and Penny are buying a house. The cost of the house is \$150,000 and requires a 20% down payment. They can get a 30 year mortgage for 4.25% interest, or they can get a 15 year mortgage for 4.00% interest. Find the total cost of the house for each plan.
Now, the total cost is the sum of the down payment and the monthly payments.

30 years $\$ 242,518.80$
15 years $\$ 189,773.40$

Total Interest

The Total Interest paid can be found in the following ways:

Total Interest $=$ Total Cost - Selling Price

Or

Total Interest $=$ Total Payments - Mortgage + Points

