Introduction to the TVM Solver

- To access the TVM Solver hit APPS
- Choose 1: Finance
- Choose 1:TVM Solver..

Key to the TVM Solver

N : Total number of compounding over the entire time

- This is NOT n in the finite compound interest formula.
- This is nt in the exponent of the finite compound interest formula.
- For instance, if an investment is compounded monthly over 30 years, $\mathrm{N}=360(30 * 12)$.
- If an investment is compounded quarterly over 20 years, then $\mathrm{N}=80(4 * 20)$.

Key to TVM Solver

I: This the interest rate.

- Unlike substitution in the formulas, where a decimal value for the \% was used, in the TVM solver I is entered in its percent form.
- For instance, if the interest rate is 6%, then in the TVM solver enter 6-not 06 .
- If the interest rate is 8.75%, in the TVM solver enter 8.75.

Key to TVM Solver

PV: Present Value

- This is Principle in the formulas
- So, if Jonna invested $\$ 500$ at 6%, her PV is $\$ 500$.

PMT: Payment

- This would represent a regular payment to be made either on a loan or to be put in an investment.
- So, if Nick opens an account and makes a monthly installment of $\$ 150$, then PMT is $\$ 150$.

Key to TVM Solver

FV: Future Value

- This is the amount of money in the account or the amount remaining on a loan at a specified time.
- Suppose, Roberta invests $\$ 5,000$ compounded monthly for 20 years. FV is the amount she will have at the end of the 20 years.
- Or, suppose that Mandy borrowed $\$ 20,000$ for five years. At the end of 5 years, her FV is zero.
- NOTE: Generally, in the TVM solver PV and FV have opposite signs.

Key to TVM Solver

P/Y: Payments per year

- This is the number of payments made per year.
- Generally, set this before the C/Y.
- Generally, P/Y and C/Y will be the same.

C/Y: Compounding periods per year.

- Set this after P/Y.
- If interest is compounded quarterly, $\mathrm{C} / \mathrm{Y}=4$.
- If interest is compounded monthly, $\mathrm{C} / \mathrm{Y}=12$

One-time Investment

Frank invests $\$ 1,200$ compounded quarterly at 6.25%. How much money will be in the account after 10 years?

$$
\begin{aligned}
& \mathrm{N}=40 \quad(4 * 10) \\
& \mathrm{I} \%=6.25 \\
& \mathrm{PV}=1200 \\
& \mathrm{PMT}=0
\end{aligned}
$$

FV This is what we want to find
$\mathrm{P} / \mathrm{Y}=4$
$\mathrm{C} / \mathrm{Y}=4$
Enter all values and arrow back to FV. Hit "Alpha" and "Enter." The FV will appear. It is -2231.09 , which means there is $\$ 2,231.09$ in his account after 10 years.
How much of this was interest? 2231.09-1200.00=1031.09

Now let's turn to annuities

As opposed to a one-time investment like the previous example, an annuity involves regular payments into an investment account.

Example: Julia puts $\$ 150$ per month into a future retirement account.

Inversely, annuities can involve a person taking regular withdrawals from an account.

Example: At 66 Julia takes the money that she has saved and begins to take regular withdrawals of $\$ 1,200.00$ from her account.

Annuity

Marcus puts $\$ 150$ per month in an annuity that pays 5.75% interest compounded monthly. How much money will he have in the account in 30 years?

$$
N=360
$$

$$
\mathrm{I} \%=5.75
$$

$$
P V=0
$$

$$
\mathrm{PMT}=150
$$

FV This is what we want to find
$\mathrm{P} / \mathrm{Y}=12$
$\mathrm{C} / \mathrm{Y}=12$
Answer: FV is -143669.64 or $\$ 143,669.64$

How much did Marcus put into the account? $150 * 360=54,000$
How much interest did Marcus make? $\quad 143,669.64-54,000=89669.64$

Combo Investment

Kim is 22 years old. She has $\$ 2,000$ that she can put into an investment for retirement. She also wants to put $\$ 250$ per month in to the account until she retires at 66. If the investment pays 7.25% compounded monthly, how much will she have when she retires?

$$
\begin{aligned}
& \mathrm{N}=528 \\
& \mathrm{I} \%=7.25 \\
& \mathrm{PV}=2000 \\
& \mathrm{PMT}=250
\end{aligned}
$$

FV This is what we want to find
$\mathrm{P} / \mathrm{Y}=12$
$\mathrm{C} / \mathrm{Y}=12$
Answer: $\$ 1,002,171.89$ She will be a millionaire!

How much of her million dollars is from interest?

Who has the better plan?

Jenny starts saving for retirement when she is 22 years old. She puts aside $\$ 175 /$ month. Her friend Heather decides to wait until she is established financially to save for retirement. She plans to start setting aside $\$ 350 /$ month beginning at age 35 . If both choose investments that pay 7.75% compounded monthly and both retire at 65, who made the better choice?

$$
\begin{array}{ll}
\mathrm{N}=516 & 360 \\
\mathrm{I} \%=7.75 & 7.75 \\
\mathrm{PV}=0 & 0 \\
\text { PMT }=175 & 350
\end{array}
$$

$\mathrm{FV}=$ This is what we are to find.
$\mathrm{P} / \mathrm{Y}=12$
$\mathrm{C} / \mathrm{Y}=12$
Answer: Jenny: $\$ 723,748.50$ Heather: $\$ 495,898.83$

How long will it last?

Manuel just retired. He has \$450,000 in investments that he is combining to buy an annuity, which pays 6.5% interest compounded monthly. He wants his money to last for 20 years. How much money can he withdraw per month to meet his goal?

$$
\begin{aligned}
& \mathrm{N}=240 \\
& \mathrm{I} \%=6.5 \\
& \mathrm{PV}=450000
\end{aligned}
$$

$$
(12 * 20)
$$

PMT This what we are to find.

$$
\begin{aligned}
& \mathrm{FV}=0 \\
& \mathrm{P} / \mathrm{Y}=12 \\
& \mathrm{C} / \mathrm{Y}=12
\end{aligned}
$$

Answer: \$3,355.08 per month for 20 years.

How long will it last?

On second thought, Manuel wants to have \$100,000 left for his heirs. He has $\$ 450,000$ in investments that he is combining to buy an annuity, which pays 6.5% interest compounded monthly. He wants his money to last for 20 years. How much money can he withdraw per month to meet his goal?

$$
\begin{aligned}
& \mathrm{N}=240 \quad(12 * 20) \\
& \mathrm{I} \%=6.5 \\
& \mathrm{PV}=450000 \\
& \mathrm{PMT} \text { This what we are to find. } \\
& \mathrm{FV}=-100000 \quad \text { (Notice the opposite sign of } \mathrm{PV} \text {) } \\
& \mathrm{P} / \mathrm{Y}=12 \\
& \mathrm{C} / \mathrm{Y}=12
\end{aligned}
$$

Answer: $\$ 3,151.17$ per month for 20 years.

Home Buying Terminology

Selling price: The price in the contract to buy the house.

Closing: The meeting at which the buyer, seller, and loan officers legally finalize the sell of the house.

Down payment: The amount of money the buyer must bring to closing to prepay part of the price of the house. This is usually a percentage of the selling price.

Example: A buyer pays $\$ 120,000$ for a house. The down payment is 20% of the purchase price .

$$
.20 \times 120,000=24,000
$$

Home buying terminology

Mortgage: The amount of money that the buyers actually borrow to pay for the house.
Example: The mortgage for a house with purchase price of $\$ 120,000$ and a 20% down payment is $\$ 96,000$.
(Mortgage $=$ Purchase Price - Down payment)

Points: A prepayment on interest due at closing in order to lower the interest rate of the mortgage. Each point is a percentage point of the mortgage (loan amount).

Example: 2 points are paid at closing to lower the interest rate of the mortgage (loan amount) of $\$ 96,000$.

The points will cost $\$ 1,920(.02 * 96000)$.

Mortgage

Mary Beth takes out a \$175,000 mortgage that requires monthly payments. The interest is 4.125 compounded monthly for 15 years. What is her monthly payment?

$$
\mathrm{N}=180 \quad(12 * 15)
$$

$$
\mathrm{I} \%=4.125
$$

$\mathrm{PV}=-175000 \quad$ (Notice the negative)
PMT=This what we want to find
$\mathrm{FV}=0$
$\mathrm{P} / \mathrm{Y}=12$
$\mathrm{C} / \mathrm{Y}=12$
Answer: \$1,305.44

How much does the house REALLY cost?

The cost of a house is NOT really the selling price.
Consider all that goes into what you pay for a house.

Total Cost $=$ Down payment + Points + Total Monthly Payments

Example: George buys a house for $\$ 200,000$. The down payment is $20 \%(\mathrm{DP}=.20 * 200,000=40,000)$. He pays 2 points (Points $=.02 * 160,000=3,200)$. Suppose his monthly payments end up being $\$ 763.86$ for 30 years ($\$ 274989.60$).
$\mathrm{TC}=40,000+3,200+274,989.60=\$ 318,189.60$

How much did they really pay?

Joey and Penny are buying a house. The cost of the house is \$150,000 and requires a 20% down payment. They can get a 30 year mortgage for 4.25% interest, or they can get a 15 year mortgage for 4.00% interest. Find the total cost of the house for each plan.
First, remember the mortgage does not include the down payment, but the total cost will. The mortgage is 80% of $\$ 150,000(\$ 120,000)$ Now find the payment under each plan.

$$
\begin{array}{lc}
\mathrm{N}=360 & 180 \\
\mathrm{I} \%=4.25 & 4 \\
\mathrm{PV}=120000 & 1200 \\
\mathrm{PMT}=\text { This is what we are finding } \\
\mathrm{FV}=0 & 0 \\
\mathrm{P} / \mathrm{Y}=12 & 12 \\
\mathrm{C} / \mathrm{Y}=12 & 12
\end{array}
$$

$$
120000
$$

Answer: $\$ 590.33$ for 30 years or $\$ 887.63$

How much did they really pay?

Joey and Penny are buying a house. The cost of the house is \$150,000 and requires a 20\% down payment. They can get a 30 year mortgage for 4.25% interest, or they can get a 15 year mortgage for 4.00% interest. Find the total cost of the house for each plan.
Now, the total cost is the sum of the down payment and the monthly payments.
30 years $\$ 242,518.80 \quad 15$ years $\$ 189,773.40$

Total Interest

The Total Interest paid can be found in the following ways:

Total Interest $=$ Total Cost - Selling Price

Or

Total Interest $=$ Total Payments - Mortgage + Points

