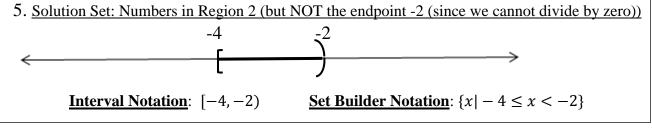
Rational Inequalities

- 1) Replace the inequality symbol with an equal sign and solve the resulting equation, obtaining boundary number(s).
- Set the denominator equal to zero and solve, obtaining another boundary 2) number. (Remember that this number itself cannot be in the solution set since it makes the denominator zero)
- 3) Place the boundary numbers on the number line and test a point in each region to determine which regions satisfy the inequality.
- 4) Write the solution set.

x > 2

Example: Solve
$$\frac{x}{x+2} \ge 2$$

$$\frac{\underline{\operatorname{Step \#1}}}{\frac{x}{x+2}} = 2$$


$$(x+2)\frac{x}{(x+2)} = 2(x+2)$$

$$x = 2x+4$$

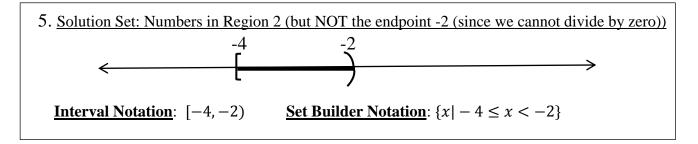
$$x = -4$$
The Boundary Numbers are -4 and -2

3. We pick <u>any</u> number in a region and test to see if that region makes the inequality true. We will test -6 in Region 1, -3 in Region 2, and 0 in Region 3.

	4 -2	
Region 1	Region 2	Region 3
$\frac{-6}{-6+2} \ge 2?$	$\frac{-3}{-3+2} \ge 2?$	$\frac{0}{0+2} \ge 2?$
$\frac{-6}{-4} \ge 2?$	$\frac{-3}{-1} \ge 2?$	$0 \ge 2?$
$\frac{3}{2} \ge 2?$ FALSE	$3 \ge 2?$	$0 \ge 2?$ FALSE

Rational Inequalities

Alternate Method


- 1) Manipulate the inequality so that we have zero on one side.
- 2) Force the other side of the equation into a single fraction.
- 3) Boundary numbers are found by setting both numerator and denominator to zero.
- 4) Determine the **sign** of the fraction in each region of our number line.
- 5) Graph the "true" intervals on the number line and write the solution set.

Step 1: Get zero on one side $\frac{x}{x+2} \ge 2$ $\frac{x}{x+2} - 2 \ge 0$

<u>Step 2</u>: Combine left side into single fraction $\frac{x}{x+2} - \frac{2(x+2)}{(x+2)} \ge 0$ $\frac{x-2x-4}{(x+2)} \ge 0$ $\frac{-x-4}{x+2} \ge 0$ **Step 3:** Find the boundary numbers <u>Numerator</u>: -x - 4 = 0 -x = 4 x = -4<u>Denominator</u>: x + 2 = 0 x = -2Draw number line with these 2 numbers marking the boundaries of our testing zones.

4. We pick <u>any</u> number in a region and test to see what the <u>sign</u> of the quotient is in that region.

We will test -100 in Region 1, -3 in Region 2, and 80 in Region 3. $\begin{array}{c|c}
-4 & -2 \\
\hline Region 1 & Region 2 & Region 3 \\
\hline \\
\frac{-(-100)-4}{-6+2} = \frac{positive}{negative} = negative & \frac{-(-3)-4}{-6+2} = \frac{negative}{negative} = positive & \frac{-(80)-4}{-6+2} = \frac{negative}{negative} = positive \\
FALSE & TRUE & FALSE \\
\end{array}$

