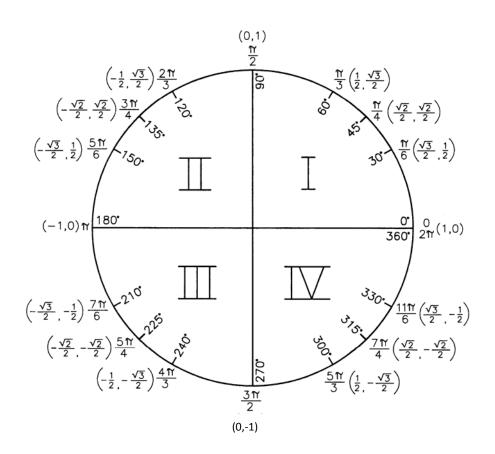

Trigonometric Identities and Formulas

Reciprocal Identities	Sum and Difference Identities
	$\sin(x+y) = \sin x \cos y + \cos x \sin y$
$\csc x = \frac{1}{\sin x} \qquad $	$\sin(x - y) = \sin x \cos y + \cos x \sin y$ $\sin(x - y) = \sin x \cos y - \cos x \sin y$
$\sec x = \frac{1}{\cos x} \qquad \qquad \cos x = \frac{1}{\sec x}$	$\cos(x + y) = \cos x \cos y$ sin x sin y
	$\cos(x + y) = \cos x \cos y - \sin x \sin y$ $\cos(x - y) = \cos x \cos y + \sin x \sin y$
$\cot x = \frac{1}{\tan x} \qquad \qquad \tan x = \frac{1}{\cot x}$	tan r+tan y
	$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$
$\cot x = \frac{\cos x}{\sin x} \qquad \qquad \tan x = \frac{\sin x}{\cos x}$	top(x = y) = tan x - tan y
	$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$
Pythagorean Identities	Even-Odd Identities
$\sin^2 x + \cos^2 x = 1$	$\sin(-x) = -\sin x$
$1 + \tan^2 x = \sec^2 x$	$\cos(-x) = \cos x$
$1 + \cot^2 x = \csc^2 x$	$\tan(-x) = -\tan(x)$
Double Angle Formulas	Half Angle Formulas
$\sin 2x = 2\sin x \cos x$	$\sin\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 - \cos x}{2}}$ $\cos\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 + \cos x}{2}}$
$\cos 2x = \cos^2 x - \sin^2 x$	
$= 1 - 2\sin^2 x$ $= 2\cos^2 x - 1$	$\cos\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1+\cos x}{2}}$
	(2) $\sqrt{2}$
$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	$\tan\left(\frac{x}{2}\right) = \frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x}$
Sum – to - Product Formulas	Product – to - Sum Formulas
(x+y) $(x-y)$	
$\sin x + \sin y = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$	$2\sin x \cos y = \sin(x + y) + \sin(x - y)$ $2\cos x \sin y = \sin(x = y) - \sin(x - y)$
$(x+y) \cdot (x-y)$	$2\cos x \cos y = \cos(x+y) + \cos(x-y)$
$\sin x - \sin y = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$	$2\sin x \sin y = \cos(x - y) - \cos(x + y)$
$\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$	Law of Sines
$\cos x - \cos y = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$	$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$
Area of a Triangle	Law of Cosines
a B c	$a^2 = b^2 + c^2 - 2bc \cos A$
C A	$b^2 = a^2 + c^2 - 2ac \cos B$
$A = \frac{1}{2}ab \sin C \qquad b$	$c^2 = a^2 + b^2 - 2ab \cos C$

The Trigonometric Functions

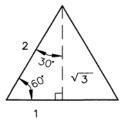
In a right triangle:

Hypotenuse is the side opposite of the right angle and always is the *longest* side.




Note: The function in the second column is the reciprocal of the function in the first column.

Unit Circle


Note: Any point along the unit circle has an x-coordinate whose value is equal to the cosine of the angle and a y-coordinate whose value is equal to the sine of the angle.

Special Triangles

