## Trigonometric Identities and Formulas

| Reciprocal Identities | Sum and Difference Identities |
| :---: | :---: |
| $\csc x=\frac{1}{\sin x} \quad \sin x=\frac{1}{\csc x}$ | $\begin{aligned} & \sin (x+y)=\sin x \cos y+\cos x \sin y \\ & \sin (x-y)=\sin x \cos y-\cos x \sin y \end{aligned}$ |
| $\sec x=\frac{1}{\cos x}$ $\cos x=\frac{1}{\sec x}$ | $\begin{aligned} & \cos (x+y)=\cos x \cos y-\sin x \sin y \\ & \cos (x-y)=\cos x \cos y+\sin x \sin y \end{aligned}$ |
| $\cot x=\frac{1}{\tan x}$ $\tan x=\frac{1}{\cot x}$ | $\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}$ |
| $\cot x=\frac{\cos x}{\sin x} \quad \tan x=\frac{\sin x}{\cos x}$ | $\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}$ |
| Pythagorean Identities | Even-Odd Identities |
| $\sin ^{2} x+\cos ^{2} x=1$ | $\sin (-x)=-\sin x$ |
| $1+\tan ^{2} x=\sec ^{2} x$ | $\cos (-x)=\cos x$ |
| $1+\cot ^{2} x=\csc ^{2} x$ | $\tan (-x)=-\tan (x)$ |
| Double Angle Formulas | Half Angle Formulas |
| $\sin 2 x=2 \sin x \cos x$ | $\sin \left(\frac{x}{2}\right)= \pm \sqrt{\frac{1-\cos x}{2}}$ |
| $\begin{aligned} \cos 2 x & =\cos ^{2} x-\sin ^{2} x \\ & =1-2 \sin ^{2} x \\ & =2 \cos ^{2} x-1 \end{aligned}$ | $\cos \left(\frac{x}{2}\right)= \pm \sqrt{\frac{1+\cos x}{2}}$ |
| $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$ | $\tan \left(\frac{x}{2}\right)=\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}$ |
| Sum - to - Product Formulas | Product - to - Sum Formulas |
| $\sin x+\sin y=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$ | $\begin{aligned} & 2 \sin x \cos y=\sin (x+y)+\sin (x-y) \\ & 2 \cos x \sin y=\sin (x=y)-\sin (x-y) \end{aligned}$ |
| $\sin x-\sin y=2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)$ | $\begin{aligned} & 2 \cos x \cos y=\cos (x+y)+\cos (x-y) \\ & 2 \sin x \sin y=\cos (x-y)-\cos (x+y) \end{aligned}$ |
| $\cos x+\cos y=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$ | Law of Sines |
| $\cos x-\cos y=-2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)$ | $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$ |
| Area of a Triangle | Law of Cosines |
|  | $\begin{aligned} & \mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 b c \cos \mathrm{~A} \\ & \mathrm{~b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}-2 a c \cos \mathrm{~B} \end{aligned}$ |
| $\begin{equation*} \mathrm{A}=\frac{1}{2} a b \sin C \tag{b} \end{equation*}$ | $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-2 a b \cos \mathrm{C}$ |

## The Trigonometric Functions

In a right triangle:
Hypotenuse is the side opposite of the right angle and always is the longest side.
Adjacent is the side next to the angle $\theta$
Opposite is the side opposite of the angle $\theta$
$\sin \theta=\frac{o p p}{h y p} \quad \csc \theta=\frac{h y p}{o p p}$
$\cos \theta=\frac{a d j}{h y p} \quad \sec \theta=\frac{h y p}{a d j}$
$\tan \theta=\frac{o p p}{a d j} \quad \cot \theta=\frac{a d j}{o p p}$


Note: The function in the second column is the reciprocal of the function in the first column.

## Unit Circle

Note: Any point along the unit circle has an x -coordinate whose value is equal to the cosine of the angle and a $y$-coordinate
Special Triangles whose value is equal to the sine of the angle.

( $0,-1$ )


RIGHT
TRIANGLE


