Vector Addition

Vectors can be described by specifying either their magnitude and direction (polar coordinates) or their x and y components (rectangular, or Cartesian, coordinates). Consider a vector \mathbf{A} (we use boldface to denote a vector) that has a length (or magnitude) A and makes an angle θ with the x -axis. The rectangular coordinates of \mathbf{A} obey these formulae:

$$
\begin{align*}
& \mathrm{A}_{\mathrm{x}}=\mathrm{A} \cos \theta \tag{1}\\
& \mathrm{~A}_{\mathrm{y}}=\mathrm{A} \sin \theta \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\text { Magnitude of } \mathbf{A}=|\mathbf{A}|=\mathrm{A}=\sqrt{\left({A_{x}}^{2}+A_{y}{ }^{2}\right)} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\text { Direction of } \mathbf{A}=\theta=\tan ^{-1}\left(\mathrm{~A}_{\mathrm{y}} / \mathrm{A}_{\mathrm{x}}\right) \tag{4}
\end{equation*}
$$

Vectors are not added in the same way as ordinary numbers. Vector addition can be done in two ways: graphically or analytically. Each method involves a specific procedure that must be followed.

For Graphical Addition, please review the applets listed below. It is necessary to use graph paper and a protractor to ensure that vectors are drawn to scale and at appropriate angles.
https://www.msu.edu/~brechtjo/physics/vectorAdd/vectorAdd.html
http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=51
http://www.walter-fendt.de/ph14e/resultant.htm
http://comp.uark.edu/~jgeabana/java/VectorCalc.html

For Analytical Addition, use the following rule:
"The component of the sum equals the sum of the components."
That is, if $\mathbf{C}=\mathbf{A}+\mathbf{B}$, then

$$
\begin{equation*}
\mathrm{C}_{\mathrm{x}}=\mathrm{A}_{\mathrm{x}}+\mathrm{B}_{\mathrm{x}} \quad \text { and } \mathrm{C}_{\mathrm{y}}=\mathrm{A}_{\mathrm{y}}+\mathrm{B}_{\mathrm{y}} \tag{5}
\end{equation*}
$$

The magnitude and direction of \mathbf{C} are then defined as follows:

$$
\begin{align*}
& \text { Magnitude of } \mathrm{C}=|\mathrm{C}|=\mathrm{C}=\sqrt{\left(C_{x}^{2}+C_{y}^{2}\right)} \tag{6}\\
& \text { Direction of } \mathrm{C}=\tan ^{-1}\left(\mathrm{C}_{y} / \mathrm{C}_{x}\right) \tag{7}
\end{align*}
$$

EXAMPLE:

Suppose $\mathbf{A}=3 \mathbf{i}+5 \mathbf{j}$ and $\mathbf{B}=4 \mathbf{i}-2 \mathbf{j}$. If $\mathbf{C}=\mathbf{A}+\mathbf{B}$, determine the magnitude and direction of \mathbf{C}.
STEP 1: Identify the components of the individual vectors

$$
\mathrm{A}_{\mathrm{x}}=3 \quad \mathrm{~A}_{\mathrm{y}}=5 \quad \mathrm{~B}_{\mathrm{x}}=4 \quad \mathrm{~B}_{\mathrm{y}}=-2
$$

STEP 2: Use equation (5) to compute the x and y components of the sum

$$
C_{x}=A_{x}+B_{x}=3+4=7 \quad C_{y}=A_{y}+B_{y}=5+(-2)=3
$$

STEP 3: Use equation (6) to compute the magnitude of the sum
Magnitude of $\mathrm{C}=\sqrt{\left(7^{2}+3^{2}\right)}=\sqrt{49+9}=\sqrt{58}=7.62$

STEP 4: Use equation (7) to compute the direction of the sum

Direction of $\mathbf{C}=\tan ^{-1}(3 / 7)=23.2^{\circ}$

Three or more vectors are added just as easily as two. When doing the addition analytically, just add up all the x components to find the total x component, and likewise for y . When doing the addition graphically, the only difference is that you add the vectors two at a time. In other words, add the first two and find the resultant; then add the third vector to this resultant to find a new resultant; then repeat the process until finished.

The equilibrant of a vector is the one that cancels it out - that is, the vector that when added to your original vector gives a resultant (sum) of zero. The equilibrant of any vector has the same magnitude but the opposite direction. Sometimes in vector algebra, you may see the equilibrant referred to as the negative of a vector. If you have a vector \mathbf{A}, then the equilibrant may be written as $-\mathbf{A}$.

So if \mathbf{A} has components A_{x} and A_{y}, then the equilibrant $-\mathbf{A}$ has components $-A_{x}$ and $-A_{y}$.

