Vector Cross Product

Consider a vector \mathbf{A} (we use boldface to denote a vector) with rectangular coordinates A_{x}, A_{y}, and A_{z}. We can write A as follows:

$$
\mathrm{A}=\mathrm{A}_{\mathrm{x}} \mathbf{i}+\mathrm{A}_{\mathrm{y}} \mathbf{j}+\mathrm{A}_{z} \mathbf{k}
$$

where \mathbf{i} is a unit vector in the x direction, \mathbf{j} is a unit vector in the y direction, and \mathbf{k} is a unit vector in the z direction.

If we have two vectors \mathbf{A} and \mathbf{B}, defined as above, then we define the cross product of \mathbf{A} and \mathbf{B}, written A x B (read "A cross B") as follows:

$$
\begin{equation*}
A x B=\left(A_{y} B_{z}-A_{z} B_{y}\right) i-\left(A_{x} B_{z}-A_{z} B_{x}\right) j+\left(A_{x} B_{y}-A_{y} B_{x}\right) k \tag{1}
\end{equation*}
$$

Notice that the cross product is a vector. It may also be referred to as the vector product.
This is an ugly formula, so it is often expressed as a determinant:

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

(For a quick review of how to calculate determinants, see http://www.ucl.ac.uk/mathematics/geomath/level2/mat/mat121.html)

The following websites may also be helpful:
http://mathworld.wolfram.com/CrossProduct.html
http://www.khanacademy.org/math/linear-algebra/v/linear-algebra--cross-productintroduction
http://hyperphysics.phy-astr.gsu.edu/hbase/vvec.html

EXAMPLE:

Suppose $\mathbf{A}=3 \mathbf{i}+5 \mathbf{j}$ and $\mathbf{B}=4 \mathbf{i}-2 \mathbf{j}$. Compute $\mathbf{A} \times \mathbf{B}$.
STEP 1: Identify the components of the individual vectors

$$
A_{x}=3 \quad A_{y}=5 \quad A_{z}=0 \quad B_{x}=4 \quad B_{y}=-2 B_{z}=0
$$

STEP 2: Use equation (1) to compute the cross product

We could barrel through the formula, or we could notice that $A_{z}=B_{z}=0$. That means the first two terms in the ugly formula will also be zero. So here,

$$
A \times B=\left(A_{x} B_{y}-A_{y} B_{x}\right) \mathbf{k}=[(3)(-2)-(5)(4)] \mathbf{k}=(-6-20) \mathbf{k}=-26 \mathbf{k}
$$

Aha. In this example, the vectors \mathbf{A} and \mathbf{B} were all in the x-y plane, but the cross product $\mathbf{A} \times \mathbf{B}$ was all in the z direction. This leads us to an important point:

NOTE: The cross product $\mathbf{A x B}$ defines a vector that is perpendicular to \mathbf{A} and \mathbf{B}.

Alternate Formula

It happens that the magnitude of the cross product can also be calculated as follows:

$$
\begin{equation*}
|\mathrm{A} \times \mathrm{B}|=|\mathrm{A}||\mathrm{B}| \sin \theta \tag{2}
\end{equation*}
$$

where $|\mathbf{A}|$ is the magnitude of $\mathbf{A},|\mathbf{B}|$ is the magnitude of \mathbf{B}, and θ is the angle between them. This formula may be helpful when you are given the magnitudes and angles to begin with.

EXAMPLE:

Suppose A is a vector of magnitude 6 at an angle of 60°. Suppose B is a vector of magnitude 4 at an angle of -25°. Compute $|\mathbf{A \times B |}|$.

STEP 1: Compute the angle θ between the vectors

$$
\theta=60^{\circ}-\left(-25^{\circ}\right)=85^{\circ}
$$

STEP 2: Compute the sine of the angle θ

$$
\sin \theta=\sin \left(85^{\circ}\right) \sim 0.996 \text { (rounding off) }
$$

STEP 3: Use equation (2) to compute the magnitude of the cross product

$$
|\mathrm{A} \times \mathrm{B}|=|\mathrm{A}||\mathrm{B}| \sin \theta=(6)(4)(0.996) \sim 23.9
$$

Note that $|\mathbf{A x} \mathbf{B}|$ ranges from 0 when \mathbf{A} and \mathbf{B} are parallel to $|\mathbf{A}||\mathbf{B}|$ when \mathbf{A} and \mathbf{B} are perpendicular.

