Vector Dot Product

Consider a vector **A** (we use **boldface** to denote a vector) with rectangular coordinates A_x and A_y . We can write A as follows:

$$\mathbf{A} = \mathbf{A}_{\mathbf{x}}\mathbf{i} + \mathbf{A}_{\mathbf{y}}\mathbf{j}$$

where **i** is a unit vector in the x direction and **j** is a unit vector in the y direction.

If we have two vectors **A** and **B**, defined as above, then we define the *dot product* of **A** and **B**, written $\mathbf{A} \cdot \mathbf{B}$ (read "A dot B") as follows:

$$\mathbf{A} \bullet \mathbf{B} = \mathbf{A}_{\mathbf{x}} \mathbf{B}_{\mathbf{x}} + \mathbf{A}_{\mathbf{y}} \mathbf{B}_{\mathbf{y}} \tag{1}$$

Notice that the dot product is a *scalar*; it is the sum of one or more scalars. It may be referred to as the *scalar product*.

The following websites may also be helpful:

http://www.falstad.com/dotproduct/ http://betterexplained.com/articles/vector-calculus-understanding-the-dot-product/

Simple EXAMPLE:

Suppose $\mathbf{A} = 3\mathbf{i} + 5\mathbf{j}$ and $\mathbf{B} = 4\mathbf{i} - 2\mathbf{j}$

STEP 1: Identify the components of each vector

 $A_x = 3$ $A_y = 5$ $B_x = 4$ $B_y = -2$

STEP 2: Use equation (1) to compute the dot product

$$\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y = (3)(4) + (5)(-2) = 12 - 10 = 2$$

More Complicated EXAMPLE:

The rules are the same for three-dimensional vectors.

Suppose $\mathbf{A} = 3\mathbf{i} + 5\mathbf{j} + 8\mathbf{k}$ and $\mathbf{B} = 4\mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Compute $\mathbf{A} \cdot \mathbf{B}$.

STEP 1: Identify the components of each vector

 $A_x = 3$ $A_y = 5$ $A_z = 8$ $B_x = 4$ $B_y = -2B_z = 1$

Andrea J. Pepper	Georgia Perimeter College	9/18/2012	Page 1 of 2
------------------	---------------------------	-----------	-------------

STEP 2: Use equation (1) to compute the dot product

$$\mathbf{A} \bullet \mathbf{B} = A_x B_x + A_y B_y + A_z B_z = (3)(4) + (5)(-2) + (8)(1) = 10$$

<u>Alternate Formula</u>

It happens that the dot product can also be calculated as follows:

$$\mathbf{A} \bullet \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta, \tag{2}$$

where $|\mathbf{A}|$ is the magnitude of \mathbf{A} , $|\mathbf{B}|$ is the magnitude of \mathbf{B} , and θ is the angle between them.

This formula may be helpful when you are given the magnitudes and angles to begin with.

EXAMPLE:

Suppose A is a vector of magnitude 6 at an angle of 60° . Suppose B is a vector of magnitude 4 at an angle of -25° . Compute $\mathbf{A} \cdot \mathbf{B}$.

STEP 1: Compute the angle θ between the vectors

 $\theta = 60^{\circ} - (-25^{\circ}) = 85^{\circ}$

STEP 2: Compute the cosine of the angle θ

 $\cos \theta = \cos(85^\circ) \sim 0.0872$ (rounding off)

STEP 3: Use equation (2) to compute the dot product

 $\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta = (6)(4)(0.0872) \sim 2.09$

Interpretation

The dot product of A and B can be thought of as the product of one vector times the component of the second that lies parallel to the first.

Note that $\mathbf{A} \cdot \mathbf{B}$ ranges from 0 when \mathbf{A} and \mathbf{B} are perpendicular to $|\mathbf{A}| |\mathbf{B}|$ when \mathbf{A} and \mathbf{B} are parallel.