Vector Dot Product

Consider a vector \mathbf{A} (we use boldface to denote a vector) with rectangular coordinates A_{x} and A_{y}. We can write A as follows:

$$
\mathrm{A}=\mathrm{A}_{\mathrm{x}} \mathbf{i}+\mathrm{A}_{\mathrm{y}} \mathbf{j}
$$

where \mathbf{i} is a unit vector in the x direction and \mathbf{j} is a unit vector in the y direction.
If we have two vectors \mathbf{A} and \mathbf{B}, defined as above, then we define the dot product of \mathbf{A} and \mathbf{B}, written $\mathbf{A} \cdot \mathbf{B}$ (read "A dot B") as follows:

$$
\begin{equation*}
A \cdot B=A_{x} B_{x}+A_{y} B_{y} \tag{1}
\end{equation*}
$$

Notice that the dot product is a scalar; it is the sum of one or more scalars. It may be referred to as the scalar product.

The following websites may also be helpful:
http://www.falstad.com/dotproduct/
http://betterexplained.com/articles/vector-calculus-understanding-the-dot-product/

Simple EXAMPLE:

Suppose $\mathbf{A}=3 \mathbf{i}+5 \mathbf{j}$ and $\mathbf{B}=4 \mathbf{i}-2 \mathbf{j}$
STEP 1: Identify the components of each vector

$$
\mathrm{A}_{\mathrm{x}}=3 \quad \mathrm{~A}_{\mathrm{y}}=5 \quad \mathrm{~B}_{\mathrm{x}}=4 \quad \mathrm{~B}_{\mathrm{y}}=-2
$$

STEP 2: Use equation (1) to compute the dot product

$$
A \cdot B=A_{x} B_{x}+A_{y} B_{y}=(3)(4)+(5)(-2)=12-10=2
$$

More Complicated EXAMPLE:

The rules are the same for three-dimensional vectors.
Suppose $\mathbf{A}=3 \mathbf{i}+5 \mathbf{j}+8 \mathbf{k}$ and $\mathbf{B}=4 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$. Compute $\mathbf{A} \cdot \mathbf{B}$.
STEP 1: Identify the components of each vector

$$
\mathrm{A}_{\mathrm{x}}=3 \quad \mathrm{~A}_{\mathrm{y}}=5 \quad \mathrm{~A}_{\mathrm{z}}=8 \quad \mathrm{~B}_{\mathrm{x}}=4 \quad \mathrm{~B}_{\mathrm{y}}=-2 \mathrm{~B}_{\mathrm{z}}=1
$$

STEP 2: Use equation (1) to compute the dot product

$$
A \cdot B=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=(3)(4)+(5)(-2)+(8)(1)=10
$$

Alternate Formula

It happens that the dot product can also be calculated as follows:

$$
\begin{equation*}
\mathrm{A} \cdot \mathrm{~B}=|\mathrm{A}||\mathrm{B}| \cos \theta, \tag{2}
\end{equation*}
$$

where $|\mathbf{A}|$ is the magnitude of $\mathbf{A},|\mathbf{B}|$ is the magnitude of \mathbf{B}, and θ is the angle between them.

This formula may be helpful when you are given the magnitudes and angles to begin with.

EXAMPLE:

Suppose A is a vector of magnitude 6 at an angle of 60°. Suppose B is a vector of magnitude 4 at an angle of -25°. Compute $\mathbf{A} \cdot \mathbf{B}$.

STEP 1: Compute the angle θ between the vectors

$$
\theta=60^{\circ}-\left(-25^{\circ}\right)=85^{\circ}
$$

STEP 2: Compute the cosine of the angle θ

$$
\cos \theta=\cos \left(85^{\circ}\right) \sim 0.0872 \text { (rounding off) }
$$

STEP 3: Use equation (2) to compute the dot product

$$
A \cdot B=|A||B| \cos \theta=(6)(4)(0.0872) \sim 2.09
$$

Interpretation

The dot product of A and B can be thought of as the product of one vector times the component of the second that lies parallel to the first.

Note that $\mathbf{A} \cdot \mathbf{B}$ ranges from 0 when \mathbf{A} and \mathbf{B} are perpendicular to $|\mathbf{A}||\mathbf{B}|$ when \mathbf{A} and \mathbf{B} are parallel.

