Vector Gradient of a Scalar Function

Consider a scalar function $f=f(x, y, z)$.
Using $\nabla=\mathbf{i} \partial / \partial \mathrm{x}+\mathbf{j} \partial / \partial \mathrm{y}+\mathbf{k} \partial / \partial \mathrm{z}$, we define the gradient of f, written $\nabla \mathrm{f}$ or $\operatorname{grad} f$, as follows:

$$
\begin{equation*}
\operatorname{grad} f=\nabla f=\partial f / \partial \mathrm{x} \mathbf{i}+\partial f / \partial \mathrm{y} \mathbf{j}+\partial f / \partial \mathrm{z} \mathbf{k} \tag{1}
\end{equation*}
$$

where \mathbf{i} is a unit vector in the x direction, \mathbf{j} is a unit vector in the y direction, and \mathbf{k} is a unit vector in the z direction.

Notice that the gradient is a vector.
The following websites may also be helpful:
http://keep2.sjfc.edu/faculty/kgreen/vector/block2/del_op/node1.html\#SECTION000100 00000000000000
http://hyperphysics.phy-astr.gsu.edu/hbase/vvec.html
(For a quick review of partial derivatives, see http://www.math.wisc.edu/~CONRAD/s08/partials.pdf)

EXAMPLE:

Suppose $\mathrm{f}=\mathrm{x}^{2} \mathrm{y}^{3} \mathrm{z}^{4}$. Compute grad f.
STEP 1: Compute the necessary partial derivatives

$$
\partial f / \partial \mathrm{x}=2 \mathrm{xy}^{3} \mathrm{z}^{4} \quad \partial f / \partial \mathrm{y}=3 \mathrm{x}^{2} \mathrm{y}^{2} \mathrm{z}^{4} \quad \partial f / \partial \mathrm{z}=4 \mathrm{x}^{2} \mathrm{y}^{3} \mathrm{z}^{3}
$$

STEP 2: Use equation (1) to compute the gradient

$$
\operatorname{grad} f=\nabla \mathrm{f}=2 \mathrm{xy}^{3} \mathrm{z}^{4} \mathbf{i}+3 \mathrm{x}^{2} \mathrm{y}^{2} \mathrm{z}^{4} \mathbf{j}+4 \mathrm{x}^{2} \mathrm{y}^{3} \mathrm{z}^{3} \mathbf{k}
$$

Further EXAMPLE:

If you want to know the value of the gradient at any point (x, y, z), you just substitute the values of x, y, and z into the gradient formula.

Consider the function in the previous example, and let $\mathrm{x}=1, \mathrm{y}=2$, and $\mathrm{z}=3$. Compute the value of the gradient of that function at that point.

$$
\begin{aligned}
\operatorname{grad} f & =\nabla \mathrm{f}=2 \mathrm{xy}^{3} \mathbf{z}^{4} \mathbf{i}+3 \mathrm{x}^{2} \mathrm{y}^{2} \mathbf{z}^{4} \mathbf{j}+4 \mathrm{x}^{2} \mathrm{y}^{3} \mathrm{z}^{3} \mathbf{k} \\
& =2(1)\left(2^{3}\right)\left(3^{4}\right) \mathbf{i}+3\left(1^{2}\right)\left(2^{2}\right)\left(3^{4}\right) \mathbf{j}+4\left(1^{2}\right)\left(2^{3}\right)\left(3^{3}\right) \mathbf{k} \\
& =2(1)(8)(81) \mathbf{i}+3(1)(4)(81) \mathbf{j}+4(1)(8)(27) \mathbf{k} \\
& =1296 \mathbf{i}+972 \mathbf{j}+864 \mathbf{k}
\end{aligned}
$$

Interpretation

The gradient of a function at any point represents how quickly the function is changing, and points in the direction of the steepest (most rapid) change.

